
www.manaraa.com

Ubiquitous Computing and Communication Journal 1

BRINGING INFORMATION RETRIEVAL BACK TO DATABASE

MANAGEMENT SYSTEMS

Khaled Nagi
Dept. of Computer and Systems Engineering, Faculty of Engineering, Alexandria University, Egypt.

khaled.nagi@eng.alex.edu.eg

ABSTRACT

Information retrieval emerged as independent research area from traditional

database management system more than a decade ago. This was driven by the

increasing functional requirements that modern full text search engines have to

meet. Current database management systems (DBMS) are not capable of

supporting such flexibility. However, with the increase of data to be indexed and

retrieved and the increasing heavy workloads, modern search engines suffer from

scalability, reliability, distribution and performance problems. The DBMS have a

long tradition in coping with these challenges. Instead of reinventing the wheel, we

propose using current DBMS as backend to existing full text search engines. This

way, we bring back both worlds together. We present a new and simple way for

integration and compare the performance of our system to the current

implementations based on storing the full text index directly on the file system.

Keywords: Full text search engines, DBMS, Lucene, performance evaluation,

scalability.

1 INTRODUCTION

 Most commercial database management sys-

tems offer basic phonetic full text search functio-

nality. For example, Oracle has a module called

Oracle Text [1]. Yet, seeking to add more functio-

nality and intelligence to their search capabilities,

many commercial applications use third party spe-

cialized full text search engines instead. There are

several commercial products on the market. But

certainly Lucene [2] is the most popular open-

source product at the moment. It provides searching

capabilities for the Eclipse IDE [3], the Encyclope-

dia Britannica CD-ROM/DVD, FedEx, New Scien-

tist magazine, Epiphany, MIT’s Open-Courseware

[4] and so on.

 All search engines build an index of the data to

be retrieved in user queries. The index is always

stored in the file system on disk and can be loaded

at startup in the memory (optional in Lucene) for

faster querying. However, this is not feasible for

large indices due to memory size limitations. So,

the standard storage usually remains the file system

of the disk.

 However, with the increase of data to be in-

dexed and retrieved under heavy workloads of user

queries, search engines suffer from scalability prob-

lems both in providing adequate response times for

their users and keeping good overall system

throughput. To cope with these problems, search

engines should provide more intelligent techniques

for accessing the disk. Reliability becomes also a

problem. The possibility of corrupting the whole

index during a system crash is much higher than

loosing the data in a database after a similar crash.

Restoring a defected index might also take several

hours thus complicating the situation even further.

The search engine must manage its read and write

locks by itself as well. Distributing the index

among several sites and providing efficient mirror-

ing techniques is becoming an important issue to

large scale search engine projects such as Nutch [5].

 The database management systems have a long

tradition in coping with these challenges. Instead of

reinventing the wheel, we try to bring both world

together again in a new way. We propose using

current DBMS as backend to existing full text

search engines as opposed to either re-

implementing full text search engine functionality

into DBMS or re-implementing core DBMS fea-

tures into search engines. As a case study, we use

the open-source Lucene and MySQL without loss of

generality. We use real world data extracted from

an electronic marketplace and simulate real world

workload traces in order to demonstrate that the

overall system throughput and query response time

do not suffer with the introduction of DBMS as a

backend with their inherent overhead. In some cas-

es, some performance indices are also improved

which paves the way to using the whole spectrum

of basic infrastructural facilities offered by DBMS

such as recovery, automatic replication, distribution,

and segmentation.

 The rest of the paper is organized as follows.

www.manaraa.com

Ubiquitous Computing and Communication Journal 2

Section 2 provides a background on full text search

engines. Our proposed system integration is pre-

sented in Section 3. Section 4 contains the results of

our performance evaluation and Section 5 con-

cludes the paper.

2 BACKGROUND ON FULL TEXT

SEARCH ENGINES

2.1 Typical Features

 Full text search engines do not care about the

source of the data or its format as long as it is con-

verted to plain text. Text is logically grouped into a

set of documents. The user application constructs

the user query which is submitted to the search en-

gine. The result of the query execution is a list of

document IDs which satisfy the predicate described

in the query.

 The results are usually sorted according to an

internal scoring mechanism using fuzzy query

processing techniques [6]. The score is an indica-

tion of the relevance of the document which can be

affected by many factors. The phonetic difference

between the search term and the hit is one of the

most important factors. Some fields are boosted so

that hits within these fields are more relevant to the

search result as hits in other fields. Also, the dis-

tance between query terms found in a document

can play a role in determining its relevance. E.g.,

searching for “John Smith”, a document containing

“John Smith” has a higher score than a document

containing “John” at its beginning and “Smith” at

its end. Furthermore, search terms can be easily

augmented by searches with synonyms. E.g.,

searching for “car” retrieves documents with the

term “vehicle” or “automobile” as well. This opens

the door for ontological searches and other seman-

tically richer similarity searches.

2.2 Architecture

 As illustrated in Fig. 1, at the heart of a search

engine resides an index. An index is highly efficient

cross-reference lookup data structure. In most

search engines, a variation of the well-known in-

verted index structure is used [7]. An inverted index

is an inside-out arrangement of documents such that

terms take center stage. Each term refers to a set of

documents. Usually, a B+-tree is used to speed up

traversing the index structure.

 The indexing process begins with collecting the

available set of documents by the data gatherer.

The parser converts them to a stream of plain text.

For each document format, a parser has to be im-

plemented. In the analysis phase, the stream of data

is tokenized according to predefined delimiters and

a number of operations are performed on the tokens.

For example, the tokens could be lowercased before

indexing. It is also desirable to remove all stop

words. Additionally, it is common to reduce them

to their roots to enable phonetic and grammatical

similarity searches.

 The search process begins with parsing the

user query. The tokens and the Boolean operators

are extracted. The tokens have to be analyzed by

the same analyzer used for indexing. Then, the in-

dex is traversed for possible matches in order to

return an ordered collection of hits. The fuzzy query

processor is responsible for defining the match cri-

teria during the traversal and the score of the hit.

Figure 1: Architecture of a full text search engine

2.3 Typical Operations

2.3.1 Complete index creation

 This operation occurs usually once. The whole

set of documents is parsed and analyzed in order to

create the index from scratch. This operation can

take several hours to complete.

2.3.2 Full text search

 This operation includes processing the query

and returning page hits as a list of document IDs

sorted according to their relevance.

2.3.3 Index update

 This operation is also called incremental index-

ing. It is not supported by all search engines. Typi-

cally, a worker thread of the application monitors

the actual inventory of documents. In case of doc-

ument insertion, update, or deletion, the index is

changed on the spot and its content is immediately

made searchable. Lucene supports this operation.

3 PROPOSED SYSTEM INTEGRATION

3.1 Architecture

 Lucene divides its index into several segments.

The data in each segment is spread across several

files. Each index file carries a certain type of infor-

mation. The exact number of files that constitute a

Lucene index and the exact number of segments

vary from one index to another and depend on the

www.manaraa.com

Ubiquitous Computing and Communication Journal 3

number of fields the index contains. The internal

structure of the index file is public and is platform

independent [8]. This ensures its portability.

 We take the index file as our basic building

block and store it in the MySQL database as illu-

strated in Fig. 2. The set of files, i.e. the logical

directory, is mapped to one database relation. Due

to the huge variation in file sizes, we divide each

file into multiple chunks of fixed length. Each

chunk is stored in a separate tuple in the relation.

This leads to better performance than storing the

whole file as CLOB in the database. The primary

key of the tuple is the filename and the chunk id.

Other normal file attributes such as its size and

timestamp of last change are stored in the tuple next

to the content. We provide standard random file

access operations based on the above mentioned

mapping. Using this simple mapping, we do not

violate the public index file format and present a

simple yet elegant way of choosing between the

different file storage media (file system, RAM files,

or database).

Figure 2: Integrating Lucene index in MySQL da-

tabase

3.2 System Design

 Fig. 3 illustrates the UML class diagram of the

store package of Lucene. We only include the rele-

vant classes. The newly introduced classes are

grayed. Directory is an abstract class that acts

as a container for the index files. Lucene comes

with two implementations for file system directory

(FSDirectory) and in-RAM index (RAM-

Directory). It provides the declaration of all

basic file operations such as listing all file names,

checking the existence of a file, returning its length,

changing its timestamp, etc. It is also responsible

for opening files by returning an InputStream

object and creating a new file by returning a refer-

ence to a new instance of the OutputStream

class. We provide a database specific implementa-

tion, DBDirectory, which maps these operations

to SQL operations on the database.

 Both InputStream and OutputStream

are abstract classes that mimic the functionality of

their java.io counterparts. Basically, they im-

plement the transformation of the file contents into

a stream of basic data types, such as integer, long,

byte, etc., according to the file standardized internal

format [8]. Actual reading and writing from the file

buffer remain as abstract method to decouple the

classes from their physical storing mechanism.

Similar to FSInputStream and RAMInput-

Stream, we provide the database dependent im-

plementation of the readInternal and see-

kInternal methods. Moreover, the DBOutput-

Stream provides the database specific flushing of

the file buffer after the different write operations.

Other buffer management operations are also im-

plemented.

 Both DBInputStream and DBOutput-

Stream use the central class DBFile. A DBFile

object provides access to the correct file chunk

stored in a separate tuple in the database. It also

provides a clever caching mechanism for keeping

recently used file chunks in memory. The size of the

cache is dynamically adjusted to make use of the

available free memory of the system. The class is

responsible for guaranteeing the coherency of the

cache.

Figure 3: UML class diagram of the store package

after modification

www.manaraa.com

Ubiquitous Computing and Communication Journal 4

4 PERFORMANCE EVALUATION

 In our order to evaluate the performance of our

proposed system, we build a full text search engine

on the data of a neutralized version of a real elec-

tronic marketplace. The index is build over the tex-

tual description of more than one million products.

Each product contains approximately 25 attributes

varying from few characters to more than 1300 cha-

racters each. We develop a performance evaluation

toolkit around the search engine as illustrated in Fig.

4.

 The workload generator composes queries of

single terms, which are randomly extracted from

the product description. It submits them in parallel

to the application. The product update simulator

mimics product changes and submits the new con-

tent to the application in order to update the Lucene

index. The application consists of the modified Lu-

cene kernel supporting both file system and data-

base storage options of the full text index. The ap-

plication under test manages two pools of worker

threads. The first pool consists of searcher threads

that process the search queries coming from the

workload generator. The second pool consists of

index updater threads that process the updated con-

tent coming from the product update simulator. The

performance of the system is monitored using the

performance monitor unit.

Figure 4: Components of the performance evalua-

tion toolkit.

4.1 Input Parameters and Performance Me-

trics

 We choose the maximum number of fetched

hits to be 20 documents. This is a reasonable as-

sumption taking into consideration that no more

than 20 hits are usually displayed on a web page.

The number of search threads is varied from 1 to 25

enabling the concurrent processing of 25 search

queries. Due locking restrictions inherent in Lucene,

we restrict our experiments to maximum one index

update thread. We also introduce a think time vary-

ing from 20 to 100 milliseconds between successive

index update requests to simulate the format specif-

ic parsing of the updated products.

 In all our experiments, we monitor the overall

system throughput in terms of conducted:

• searches per second, and

• index updates per second.

We also monitor the response time of:

• the searches, and

• the index updates

from the moment of submitting the request till re-

ceiving the result.

4.2 System Configuration

 In our experiments we use a dual core Intel

Pentium 3.4 GHz processor, 2 GB RAM 667 MHz

and one hard disk having 7200 RPM, access time

of 13.2 ms, seek time of 8.9 ms and latency of 4

ms. The operating system is Windows XP. We use

JDK 1.4.2, MySQL version 5.0, JDBC mysql-

connector version 3.1.12, and Lucene version 1.4.3.

4.3 Experiment Results

 The performance evaluation considers the main

operations: complete index creation, simultaneous

full text search over single terms under various

workloads, and - in parallel - performing index up-

date as product data change. The experiments are

conducted for the file system index and the data-

base index. We drop the RAM directory from our

consideration, since the index under investigation is

too large to fit into the 1.5 GB heap size provided

by Java under Windows.

4.3.1 Complete index creation

 Building the complete index from scratch on

the file system takes about 28 minutes. We find that

the best way to create the complete index for the

database is to first create a working copy on the file

system and then to migrate the index from the file

system to the database using a small utility that we

developed to migrate the index from one storage to

the other. This migration takes 3 minutes 19

seconds to complete. Thus, the overhead in this one

time operation is less than 12%.

4.3.2 Full text search

 In this set of experiments, we vary the number

of search threads from 1 to 25 concurrent worker

threads and compare the system throughput, illu-

strated in Fig. 5, and the query response time, illu-

strated in Fig. 6, for both index storage techniques.

 We find that the performance indices are en-

hanced by a factor > 2. The search throughput

jumps from round 1,250,000 searches per hour to

almost 3,000,000 searches per hour in our proposed

system. The query response time is lowered by 40%

by decreasing from 0.8 second to 0.6 second in av-

erage. This is a very important result because it

means that we increase the performance and take

the robustness and scalability advantages of data-

base management systems on top in our proposed

system.

www.manaraa.com

Ubiquitous Computing and Communication Journal 5

Figure 5: Search throughput in an update free envi-

ronment

Figure 6: Search response time in an update free

environment

4.3.3 Index update

 In this set of experiments, we enable the incre-

mental indexing option and repeat the above men-

tioned experiments of Section 4.3.2. for different

settings of think time between successive updates.

In order to highlight the effect of incremental in-

dexing, we choose very high index update rates by

varying the think time from 20 to 100 milliseconds.

For readability purposes, we only plot the results of

the experiments having a think time of 40 and 80

milliseconds. In real life, we do not expect this ex-

aggerated index update frequency.

 Fig. 7 demonstrates that the throughput of the

index update thread in our proposed system is

slightly better than the file system based implemen-

tation. However, Fig. 8 shows that the response

time of the index update operation in our system is

worse than the original one. We attribute this to an

inherent problem in Lucene. During index update,

the whole index is exclusively locked by the index

updater thread. This is too restrictive. In our im-

plementation, we keep this exclusive lock although

the database management system also keeps its own

locking on the level of tuples which is less restric-

tive, which would allow for more than one index

update thread and certainly more concurrent

searches. The extra overhead of holding both locks

lead to the increase in the system response time.

The good news is that the response time always

remains under the absolute level of 25 seconds

which is acceptable for most application taking into

consideration the high update rate.

Figure 7: Index update throughput

Figure 8: Index update response time

 The search performance of our proposed sys-

tem becomes very comparable to the original file

system based implementation in an environment

suffering from a high rate of index updates. Fig. 9

shows that the search throughput of the proposed

system is slightly better than the file system based

implementation; whereas Fig. 10 shows that our

database index suffer from a slightly higher re-

sponse time than the original system.

 Again, the effect of the exclusive lock over the

whole index during index update is remarkable by

comparing the performance indices of Fig. 5 and

Fig. 6 to those of Fig. 9 and Fig. 10, respectively.

The search throughput drops from 3,000,000 to

round 1,100,000 searches per hour and the response

time increases from 0.6 seconds to round 3 seconds.

www.manaraa.com

Ubiquitous Computing and Communication Journal 6

Figure 9: Search throughput in an environment

with high update rate.

Figure 10. Search response time in an environment

with high update rate.

5 CONCLUSION AND FUTURE WORK

 In this paper, we attempt to bring information

retrieval back to database management systems. We

propose using commercial DBMS as backend to

existing full text search engines. Achieving this,

today’s search engines directly gain more robust-

ness, scalability, distribution and replication fea-

tures provided by DBMS.

 In our case study, we provide a simple system

integration of Lucene and MySQL without loss of

generality. We build a performance evaluation

toolkit and conduct several experiments on real data

of an electronic marketplace. The results show that

we reach comparable system throughout and re-

sponse times of typical full text search engine oper-

ations to the current implementation, which stores

the index directly in the file system on the disk. In

several cases, we even reach much better results

which mean that we take the robustness and scala-

bility of DBMS on top.

 Yet, this is only the beginning. We plan on

mapping the whole internal index structure into

database logical schema instead of just taking the

file chunk as the smallest building block. This will

solve the restrictive locking problem inherent in

Lucene and will definitely boost overall perfor-

mance. We also plan on extending our performance

evaluation toolkit to work on several sites of a dis-

tributed database.

REFERENCES

[1] Oracle Text. An Oracle Technical White Paper,

http://www.oracle.com/technology/products/text

/pdf/10gR2text_twp_f.pdf. (2005).

[2] Apache Lucene,

http://lucene.apache.org/java/docs/index.html.

[3] B. Hermann, C. Müller, T. Schäfer, and M. Me-

zini: Search Browser: An efficient index based

search feature for the Eclipse IDE, Eclipse

Technology eXchange workshop (eTX) at

ECOOP (2006).

[4] MIT OpenCourseWare, MIT Reports to the

President (2003–2004).

[5] Nutch home page,

http://lucene.apache.org/nutch/

[6] D. Cutting, J. Pedersen: Space Optimizations for

Total Ranking, Proceedings of RIAO (1997).

[7] D. Cutting, J. Pedersen: Optimizations for Dy-

namic Inverted Index Maintenance, Proceedings

of SIGIR (1990).

[8] Apache Lucene - Index File Formats,

http://lucene.apache.org/java/docs/fileformats.ht

ml.

